

Application of a Portable Multi-Frequency Electromagnetic System in the Field of Environmental Engineering Exploration

June, 2018

Introduction

This presentation will:

- Define some basics concepts related to EMI sensors
- Provide real-world examples of environmental investigation using a hand-held sensor.

What is ElectroMagnetic Induction ?

Note the phase difference between the TX and RX

• Can be used to characterize the target's electrical conductivity / magnetic susceptibility

How deep can we see ? Correct answer: it depends!

- Target size vs. depth
- Target conductivity/susceptibility
- Target contrast with soil
- Target size vs. sensor dimensions
- Motion noise -
- Electrical noise 7
- Signal loss in soil
 - Depends on frequency
 - Depth discrimination possible

The GEM-2 handheld sensor and applications

The GEM-2 handheld sensor

•Frequency domain, up to 10 simultaneous frequencies (3-5 typical)

- •Ultra-wide frequency range, from 25 Hz to 90+ kHz
 - •Lowest frequencies response similar to magnetometer
 - •Highest frequencies for low-conductivity targets

The GEM-2 handheld sensor (cont'd)

- Real-time displays
- up to 25/30 data points per second.
- •GPS (optional) time & position in data stream.

The GEM-2 handheld sensor (cont'd)

- •Using the GEM-2 on a sled or cart may provide better data
 - •Eliminates movements due to walking motion
 - •Cart made of non-conductive materials
 - •Economical even for a single survey

Application: Characterization of Underground Structures

Nevada nuclear test site: Locating a cloud chamber

One 30 cm. stainless steel pipe,
9 meters deep, clearly identified

Tachigawa, Japan: Surveying abandoned military airfield

- 6 hectare site, featureless tarmac
- Identified service tunnels, sewer lines and electrical utilities

Xian, China: identifying burial chambers

A multi-frequency survey was conducted at a site known to include ancient burial chambers from the Qin dynasty

Xian, China (cont'd)

- Non-conductive underground voids identifiable by contrast with the surrounding conductive soil
- High frequency operation is important

Application: Abandoned Landfills and Dump Sites

- Drums of various sizes buried in trenches
- Incomplete or incorrect site documents
- GEM-2 survey provides detail required for remediation

North Carolina, USA: Investigating an abandoned town landfill

- Extent of the landfill was poorly understood
- First proposal was for cutting a series of exploratory trenches

North Carolina landfill (cont'd)

- EM survey identified the extents of the landfill
- Used as a basis for further investigation

Thartar, Iraq: Investigating a suspected cache

- Reports of hidden nuclear processing equipment
- 3 hectare site surveyed and excavated in a single day

Application: Other Environmental Investigations

Alberta, Canada: Pipeline leakage

- Oil production often requires the pipeline transport of 'produced water', water containing salt ('brine')
- Any leakage can damage farmland, requiring expensive remediation
- Early detection is crucial.

Canada: Pipeline leakage (cont'd)

- Salt water is MORE conductive than surrounding soil
- A sled-based survey can quickly cover large areas and detect minor leaks
- Much cheaper than other sampling methods, the survey can be repeated on a regular basis
- Note: Other chemicals can also be found if they are LESS conductive than surrounding soil

Utah, USA: Comparing waste lagoons

Sled-mounted GEM-2

- Industrial hog farm
- Site has both clay-lined and membrane-lined hog waste lagoons

Utah, USA: Waste lagoons (cont'd)

- Hog waste is more conductive than surrounding soil
- Clay-lined lagoon is obviously porous and causing downstream contamination

Antarctica: Measuring ice shelf thickness

- Studies by Alfred Wegener Institute of Germany
- Possible because ice much less conductive than seawater
- GEM-2 multi-frequency operation enables depth sounding

End of Presentation

Geophex Ltd. would like to thank:

ICEG Organizers and Zhejiang University for inviting us to present

Our representative in China, HengDa Century(Beijing) Geophysics Technology Co., Ltd, for sponsoring our trip

You! For attending.

Geophex Family Photo Album

EM instruments on sleds & carts

- Sleds are often more stable than wheeled carts, for better data
- May be temporarily built, for a single survey

EM instruments on vehicles

• Examples for tunnel detection, mine clearance and humanitarian demining

Airborne EM instruments

• Used for shallow geology and groundwater exploration

Surface and shallow water EM instruments

• Cleanup of underwater dumps, underwater salvage

Deep sea EM instruments

• Study of sediment flows, mineral exploration

EM instruments on robotic vehicles

• For exploration of hazardous or inaccessible locations

Geophex