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ABSTRACT

A new solution for the electromagnetic response of a honzentally stratified eanth having an
arbitrary conductivity-depth function is presented. The primary field is assumed to be & magnetic
dipole. Based on a classical expression for a distinctly layered carth. a mew kernel function that
Tepresents continuous changes in conductivity is derived, It is shown that the new kemnel function
sitisfies a Riccati type differential equation for which no general solution is known (o exist and,
therefore, its analytic inversion is still an outstanding problem.

When reduced to the distinet layer cases, the new kernel fanction shows numenically than its
shape and behavior are identical to those denived from the old layered model expression, Several
exumples computed from both the old and the new kermels are compared. The new representation is
spitable for forward problems and provides a theoretical basis that can convert a wideband electro-
magnetic response ioto a continuows conductivity-depth section, The ability 1o handle an carth model
having continwously changing conductivity is urgent and timely, particularly with the advemt of

Electromagnetic Response of an Earth Having a Continuous Cenductivity Variation in Depth

brozdband sensors that can collect the entire spectral responss.

Introduction

Most electromagmetic (EM) modeling of a layered
eanth assumes & finite number of layers, each having a dis-
tinct electrical conductivity, Such a layering 1% often unre-
alisne for gradual changes in real ¢anh, This article presents
expressions for calenlating the EM response of o laterally
homogensous {i.e., 1-D¥ earth with a continuons comductiv-
ity wasiation in depth.

A practical motive for this formulation is the recznl
progress in broadband, multifrequency, EM sensors that can
measure the carth response at many frequencies, or even
the entire spectral response over a broad bandwidth (Won
et al,. 1996, 1997). Such sensors, in principle, cen generate
enough date for “frequency sounding,” 3 depth-sounding
method, by changing the transmitter frequency. Won (1980,
19£3) also discussed some theoretical and experimental re-
sults emploving broadband and sweep-frequency BM fislds.
The ultimate goal is to convert the broadband spectral EM
dita to a continuous comductivity-depih section, similar to
the velocity-depth section derived from CDF seismic data.
To eohance Imteral resolution, such a section may undergo
a depth migration process, again similar to seismic data
The fermulation presented in this article may be considered
2% A fica step ioward that goal.

Lavered Earth Model
Fundamental eqoations for the magoetic field gener
ated by a vertical dipole bocated @t the surface of a hori-
zontally stratified carth have been riven by Kozulin {1963)
and Frischknecht (1967). Figure 1 depicts the geometry of
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this classical problern. The vertical component F, of the
wector potential generated by a vertical dipole at a point at
or above the surface of the earth is. in the notation of Koe-
foed o1 al (1972}, piven by

F = E( 1
" 4“ "\-""r"‘ + l:lFI:;r L &g}}
+ J R{l?'-l' ‘i-r L1 W}E -:".:Ilr‘-""l-ru{;'\r} dl}. |::|..E.::|
1]

The components of the vector petsatial in the horizontal
plane are zero, and the displacement corrent in the earth is
ignored.

We consider the caze when both the transmitier and
receiver loops are horizontal with respect 1o the earth. The
mathematics presented here, however, is applicable to other
configurations such as ventical coplanar, vertical coaxial, or
perpendicular loops [for definitions amd mathematical der-
ivations, see, for example, Frischknecht (1967), p. 339]. As
showm in Fig. 1, the 1-Dv earth 15 modeled by a fioite num-
ber of horizontal layers, each having a distinct clectrical
eonductivity and thickness, The last (despest) laver has on
infinitz thickness. In the above equation, the vertical coor-
dinate = incredses downward, with 2 = O on the surface.
The notations wsed are defined as follows:

thickness of the m-th subsorface loyer,

conducivity of the m-th subsurface laver,

beight of the transmitter above the pround,

height of the receiver above the groumnd,

bonzonlal distance betwesn transmitier and receiver,
dipole moment of the transmitier,

A n

i)



ik

Jouwrnal af Environmemial and Engincering Geaphysics

T i 115 i b | B g
S il 1
1"7 | r |
hg
L1
.-’-".'-"?'.F'-"'!-"".-"l?'-"'?‘r .-'E.-' T P T 7
=4 1
oz =]
ot oy
Fd
A1 Ijl'|-1
Tn I:|1='-"-'

Figure 1. Greomeiry of the sensor and Eayered carth

wangular frequency of the tmnsmitted signal, and
Syl order Bessel function.

The keenel Bih) in EQ- (1ak can be computed vsing s
currence relation given by Koctoed e afl (1972) Setiing
AW = B i) in which the first suffix & represents the field
in space above the ground sucface, and the second suifix #
repressols the number of subsurface layers, we have

V.. + R {hje-mete

R, = —==l= ik
A VR
with
R ih) =10 b
where
V. = W+ k2, i1d;
EL o= . and e
v, - ¥
WL, S 1
I T G

Ifie sciaoun belween the magoctc Held sucngth
anid the vector potential F iz

H=YWF-FF {2a}

which, o the space above the pround surface, where & =
K = twpgr, = 0, reduces

H=V9.F {ih)
HL=£mﬂH,=ﬂ. (2c}
At dzidr

Appiving the differentiation (0 equation {laj pves

o I, _g{u)']
.. lli']Trr] r.'

M [
+ 4—_j MRk, d. 0, whe e b (e dh,  (3a
=),

#1th

Fr=rt bk, < Ry and

a [
H =— ARk, g, o, wle AT ek ab. (3
47 |,

whese J, and J, are Bessel functions of the first kind. The
first term io equation (3a) represents the pomary field o
the absence of the earnh, while the second term denotes the
secondary field. Only the secomfary field exiziz for the ma-
dial component expressed by (3b).

The recurmence formula (1) 15 widely wsed for com-
pating the EM responses of multi-layered earth. The inte-
grals (3a) and (3b} are often computed numerically using o
Hanke] transform alpodthm or & digital filler method (Kos-
foed et al, 1972; Andersan, 1979, 1982, Chave, 1983),

Continnous Conduchvity Model

As a first approach, consider a slowly changing con-
ductivity funclion gz}, e, no abrupl changes across layer
boundaries, We transform the keenel funstion ROA) indo o
foamm that would allow a continucusly warying conductivity
function oz}, Our goal is o express the magnetic Aeld as
an iniegral equation containing a continuous function aiz).
In order to change RiA) io & differenfial form, we fiest let
the thickmess of each layer £, be Az an iofinitesimal dis-
tance. Under this condifion, the terms appeanng in (b} can
ke substituted as follows:

Vo, -V, -1 4

Vo 4 V. A+ ke;.d__;*”'z and (4

d V. = AaWaF + 52 {4h)

Here we assume that B4z [proportional o o)) s
piecewise continupus and differentiable. Thus, the condi-
uons exclude the waditonal layered earth model consisting
of distinct layers. While the two numerstor terms in equa-
uon {1b) are 10 the first order of 4z, their product appearing
in the denominater is in the second order of Az

We also let A = 1 = 0, Le, both the transmitter and
receiver loops are Jocated on the z = @ surface. This con-
dition does not lose generality sinee an air space between
the loops and groond can be specified as a laver of zero
conductivity. For the limiting case of vanishing Az, there-
fore, we may write Equation (1b) as

B = oMy ik et &)

Expanding this and niing its own recurmence relation-
ship. we find

Rir) = K, (k)

= W F Vg

FM_I =

+ L.'_I_l{.-h,u"r'lhlalr;. 4 o i l"'ln,_..-||f-£"‘l'~'l Ful_ L

- E | S ﬂp(-i E d_‘-’..J- Y

A= |
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A owe et Ar—dl we may express (8], using (4a) and (4b},
in an imiegeal fogn:

17 1aV A )
Alh} = _EJ; FEHF(_EL 'i-"[flcfﬁ:l dz {7al

where

Viz) = Wi + £(2). {1l

The caponconal 1emm within the integrand o (7a) Lmplics
A Dwe-way alleouation in depth, while the remainiog temms
miay be interpreted as an inductive coppling within the carth
mediumm, Since the exponential term is dominant, we wouold
expect a stable and convergent integration, The secondary
vertical magneiic ficld can now be written as

M7
Hifea, r) = = E J’ LAY o h
o
1 Vi

Vo 4 MF(—EJ; 'P'lili}d'ﬁ) dz. 4}

Changing the order of inicgration beroecn z and A, and
using the relationship

1dv 1 i

Vi 200 + kD dg’ 2
we may rewole (B) as
Hi(t, ¥y = i ﬁﬂd:
Bwr I,
T WERhr) e e e ;
xJ; l-—-—-—-—~?+ﬂmexpl i_[. WOk 4 REY Lﬁ}dh.
(18

The k-inicgrid can be evaluated by the residus theorem, We
first note that ithe integral is symmefrical in A thus, ifs
inlegration range can be expanded to negative infinity. We
find owo simple poles at ko= *ek Also, the integration
along an inkinite semicirele in the upper half of the complex
plane can be shown ¢ be zero, The integral, thersfor:, can
be represented by the residue af b = £k, and, thus, becomes

, _ M7 R
Hiw, r) = 6 . k(1) F Jlkr)

« :;4—;! WENz) — KHE) dg] dz

(11}
wheie £02) = mepar(z). I is Inzresting w ohserve in (113
that the term W E{z) — KAL), depending oo the sign of (2

— g}, affects the phase of the EM field that propagates
and attenuates in the ;-direction. Equation (11) represents

a significant amprovemnent over (Ja) in the sense ihat it is
the expression by which one can compute the EM response
over an earth having o continuous conductivity function.
The exponential attenuation term insures inlegration stabil-
ity. The oext moal would be to inven eguation {11) 5o that
w(z) can be darived from 2 given wideband spectrum
Hiuer). This would be an idead “freguency-sounding”™
method,

Ricatti Represeniation

We now comsider a sccond approach where we Kind
thui the kernel B{A] sausfies o differental equation known
a% the Ricami function. To derive the equation for A, we
again start from the layered earth model and consider &,
from (Ib) s the functeon of its ficst subscript m. The in-
crease of m corresponds to the increase of the 7 coondinate,
amd, thus, 8 can be considersd also as a function of z Sim-
ilarly, ¥ <an be viewed as a function of m, or 85 a function
of the vertical coordinate = We assume that all the layers
bave the same thickness, d_ = Az Let the difference in £,
due to the change of index m be AR, = K., — K._..
Uszing equation (1b}, the difference can be expressed as:

4 Rkl — g awe]— 1 0k — Ri_e'*“"—}_ (123
o 1+ ¥, R, et

AR

Consider now the infinitesimally small change in £ ie., the
limit A7 — & The terms in (12) redece to

1 — ettty BAZY,, 1 = BRI et 3 ] — R

w,

and for the ontineous %,

V.. — —AV.V..

We pow drop the imdex m and consider the dependence an
z instead. Changing (he notation from AR, AV and Az o
4R, 4V and 4%, respectively, and dismegacding (g, we get
the differential equanon for B (2

o V@
Ria) = V@R + Zp il — Rim) (139

3¢ far, we constdersd only the lmit of 47 — O
wiich, of course, made the number of layers infinite. The
potal Bayer thickness above the homogeneous halfspace did
oot change, however. The subscript & of the function 8, (7]
indicates that the bovndary condiion for (13a) should be
transfested from {Ic), which is now written as:

Rzl = 0 i3
If the halfspace with the properties changing up to z = =

15 considered, equations (13a) and (13b) should be rewriiten
ag
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Figure I Comparizon of iwo keroel functions {(—R} for a uniferm conductive hallspace, compoted from iayered
{top) and continuous (bottom) equations. The kermel is plotted as a function of the parameter lambds and the product
of the frequency and the condoctivity of the halfspece.
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Figure 3 Comparisen of two kernel functions (—R) for 2 case of twoe layers over 3 uniform halfspace, compubed
from layered (bop) and continuoos (bottem) equabions.
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Figure 4. Kernel function R (boaginary part only)
for three heuristic examples computed from ihe contin-
woms cqguation.

Vizl :
R = 20 + ==L =K 144
12) (zhiz) 21’{:][ ek dlda)
wilh & boundary conditaon
Rizl)... = & f L4k

The solution of (14a) a0 z = O gives the kernel functon for
ithe integrals in equation {3

Rz} .. = Rihow). {15)

Equation {l4a} is of the Riccah type (s#¢ for sxample,
Bender and Orszag, 1978). Unfortunately, no universal
method for selving Riccali equations is known,

Weak Conductivity Conirsts

If the changes in material properiies are small, and
because B is a combination of the constants describing ma-
terial peapertics, the approximation K < F may be consid-
cred. Indeed, omitting a complicated proof here, we notice
that, for & homogeneous halfspace, equation (11} gives

¥i— ¥

a7

oy —+ 0 when ¥V, = ¥,

and, when R < J, the Biccali equation (14a) simplifies

Vv
R =18V == (14)
i

which, with the boundary condition (14b), has a soluton:

F - '
7y = - —— o gk | d
Rz :xp{z J[. 1-"-:ir) j 21#-::zp( J; F,)
(17}
The kemel function is then;

-~ 1_!'" s
Rih, o, wh = Bz, = —j _HF{_J’ P’d&] o,
Ay, Cug suf) 3 IV :

(18]

The kemel in {18) coincides with the results obtained in
the previous section as expressed by equations (8) and (L1}
As we sez now, this function comesponds to the case of 3
slow change of propertics of the conducting medivm. Un-
fortunately, there 1s always al least one abrupt change of
properties, and that 15 the discontinuity between Lthe ar and
the earth; R, coresponds o the Geld just above the earth’s
surface. Thus, equation (18) is applicable only to the case
when the receiver is in touch with the halfspace,

Sharp Discontmuity

Although equation {14a) was formally denved with
the assumption of continucns ¥zl there is no limit on the
derivatives of ¥izb and B(z). Thus, we may study the Lo
iting case of sharp discontinuity. Physically, a discontinuity
can be represented a8 an area (interval oo the z-axis) with
large derivatives of the functions involved. When this is the
case, the term 2KV can be disregarded compared to the
ather two tecms in {1da) which include dernvatives, Then
{14a) becomes

a L'"
IS Sy {19
| - R* 2V
which has 2 solunon
1.1+ K i ;
- == 13 a0
21l1t P 2Il:llll!f k (20

where © is an arbitrary constant. Thus, on both sides of the
discontinuity, the combination
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Figure 3.  Rernel Toocton — R {imaginary par only) compoied from the continueus eqoalion for thres caves where

resisfive media bound a conductive laver.

C = (Vb + R —R) should remain constant. Hence, it
follows that:

i'Il-rl|-l.-| + 'ﬁ:-.a
1+ ¥ g o

N N ™ W

Ao = {21}
which 15 the same as (1b), with the excepiion of the 2x-
ponents. The exponents in (1b) reflect the decay of the field
a3 1 propagates inside o layer, while the rest of the ferms
describe the change in the field that occurs on the boundary
between liyvers m and m—1. Bguation (21) shows oaly the
change across the sharp discontinoity, without sccounting
For the decay 0 the rest of the space, Thus, both squations
identically describe the sharp discontinuity.

In the case that the exponeniial decay inside the lay-
ers does not enier o the equation (2.5, the case of &
homopgeneous halfspace), equations (1} and (21) give iden-
tigal results:

V=W k=¥
V.+ V¥V, h+¥

L (22}

it bx bteresting o note ihat for the free space, ¥V = ¥, =
k. equation {143} can be wriltten as &' — 2R = 0 with the
solution B = C e ie, regular exponential decay.

Inverse Problem. Solutien for Wzl when B{z) s Known
When the funciion R is known as a function of depth,

Kizp, the properties of the medium, Viz), can be oblained

as follows, We first rewrite {14a) by substituting £F = 1/¥:

AR
| BEY

U =4df - L (23}

The general solutlon of (Z3) s
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Lz = ex o
: Vt =
b g mr
] e i | dx
¥ L+4£H::]:-Uu I—R"ﬂ')

wieie 15 an arbitrary constant. After some monipulislions
and returning 1o the original varable Y(z), we get the so-
lution of the inverse problem:

- R
Vizl = {—L L

(24}

I + R

| I+ R0 S S T 1
"L [ - R(D) ‘1] T Rm‘&H |
(23F
Mupnerical Simuolations

We nave shown unidyticelly that the discret: equation
{1b—1} and the continwous equation (1d) result in an iden-
tical expression for a uniform halfspace. In this section. we
show that the numedeal solutions of both equations give
the same results not only for a uniform halfzpace, but also
for the layered models.

We compare here the kemel functions for layered and
continsous cases. While the layered equation makes the so-
lution for & readily available, the continoous equation (14}
showld be solved nomedcally. Usiog Anite differences, we
approxirmate squation 133k as;

R., =R —1{12V.R +
IV.Ar

-"'lll = Llll-l
—————(1 = Ef}pAz. {218)
with

E. =0 ad R,= Rzl .. {21b}

Notice that this representation 15 different from the one in
equation (1b-f), the frue layered cquation. The thickness
and the number of layers in equation {21a) are defined by
the reguirement of the finite difference scheme (its approx-
imaiion and convergence). The regions of sharp disconti-
nuity cun be represented as a stack of thin layers with con-
st commductivities. The conductivity of the Layers in the
stack changes with the layer number &, fromy the valwe at
one side of the sharp discontinuity, to the vaiue on the other
side of the sharp discontinuity. By making the seack of fay-
ers thinner, any sharp discontinuitics can be reasonably rep-
pesenied.

In the following figures, we plot the real and imag-
nary parts of the kemel function &£ as a funcion of param-
eter h and the product of the frequency f and conductivity

We pze logarithmic axes for both b and fir, For visuat
case, we choose to plot —R(k, o) instead of Rk, fir). As
we start with a halfspace and move oo to layered and con-

finuous cases, we uss e following conventions, Tl con-
ductivity, #% & fupction of luyer number m, or of depth o
is described as o, = 5,0, or () = sz, where o 08 The
constant conduetivity of the halfspace underlying all layers,
or the region with continwously changing conductivity.
Thus, each mede] is described through the conductivity pa-
ranigter 2. For the underlying halfspace, the conductivity
parameter 15 equal (o one.

The solution for the unifosm halfspace ic shown io
Fig. 2, for both the layered equation (top) and the contin-
gous eguation (hottom). The numencal representations for
the two equations ore ideptical.

Figure 3 shows the kemnels of both equations in the
case of a highly conductive layer buried under a layer with
the same conduclivity as in the underlying hallspace, We
agiin see the remarkable agreement between the solutions
pbtained from the layered (top) and the continwous equa-
tiens (Boftom),

Figure 4 shows fhree heurisiic examples (imagioary
parts cnly, for simplicity) compuoted from the continnous
equation {21a) ooly. The effecis of thickness and conduc-
tivity contrast for various layers are studied. The resulis
indicate that some of the paramelers may be strongly cou-
pled. For instance, the product of layer thickness and ¢aon-
ductivity ¢onirast may not be easily resclved, since the con-
tribution of a thin but high conductivity layer is similar 10
that of a thick but low conductivity layer.

Lastly, Fig. 5 shows three cases of continucusly
changing cenductivity in depth. Thess solutions, obviously,
can only be obtained usiog the continwous equations,

Conclusions

Orver the past, the EM method has adopred a Jayered-
wirth mode] as the standard of interpretation. Only recently
have there been commercial, active EM sensors that can
measure continuous wideband responses. While the EM
method is popular for locating isolated conductivity anom-
alies {as in mineral and environmental surveys). there is a
strong possibility that it can be expanded to a general strli-
praphic mapping tool using broadband data. A theorstical
analogue would be a frequency-domain reflection seismic
section (of course, there is no such thing in practice!) that
can Be converted to a familiar time-domain section through
an inverse Fourier transform. A 1-D earth having & contin-
uows eonductiviey in depth, which may be derived from
hroadband EM data, would be the first step necessary fo
qualify the EM method as a general pealogic mapping Wl
Drepth migration, similar in concept to that of the CDF se-
ismics, can follow o enhance laterdl resolution.

The possibilities of such 2 breakthrough are s6ll in
the explomatory siages, considering the ¢omplex physical
principles and the geological materials involved. We hope
that the formulation presented here encourages further smd-
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s in the peophysical community. We believe that the
broadband EM method, when 11 ¢an deal with the conduc-
wvity continoum, will be one of the most efficient geo-
physical methods for mapping complex subsurface struc-
wres encountered in peological, environmental, and geo-
izchnical investigaiions.
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