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The use of quad–quad resistivity in helicopter
electromagnetic mapping

Haoping Huang∗ and Douglas C. Fraser‡

ABSTRACT

The apparent resistivity from a helicopter-borne
frequency-domain electromagnetic (EM) system is typ-
ically obtained from the in-phase and quadrature re-
sponses arising from the flow of conduction currents
in the earth. The most commonly used resistivity algo-
rithms, derived from half-space models and using single-
frequency data, do not account for magnetic polarization
and consequently do not yield a reliable value for appar-
ent resistivity in highly magnetic areas. This is because
magnetic polarization modifies the EM response, caus-
ing the computed resistivity to be erroneously high. The
impact of magnetic permeability on the EM response is
much greater for the in-phase component than for the
quadrature component. If magnetic polarization is to be
ignored, the calculation of the apparent resistivity using
the quadrature component at two frequencies (the quad–
quad algorithm) is less subject to error from magnetic po-
larization than if the in-phase and quadrature responses
at a single frequency are used (the in-phase–quad algo-
rithm). The quad–quad algorithm, however, can display
undesirable behavior for large induction numbers, i.e.,
when conductivities and frequencies are large. Deter-

mining which algorithm is optimum is a data-dependent
choice, which, of course, is area dependent.

We have studied the behavior of the quad–quad (ap-
parent) resistivity and its comparison to in-phase–quad
resistivity to determine the conditions under which the
use of quad–quad resistivity is appropriate. For a two-
layer earth, the behavior of the quad–quad resistivity
depends mainly upon the ratio of the lower frequency
fL to the upper-layer resistivity ρ1. If this ratio is low, the
quad–quad resistivity will behave well. In areas yielding
a high value of the ratio fL/ρ1, the quad–quad resistivity
may lie outside of the range of the true resistivities of
the earth and therefore provide misleading information.
Our studies therefore suggest that the quad–quad
resistivity algorithm should be avoided in areas where
the ratio is large, i.e., when using high frequencies
in conductive areas. The term large is relative. For a
two-layer case, for example, the use of quad–quad re-
sistivity is only recommended for magnetic areas where
fL/ρ1 < 500 Hz/ohm-m, when conductive cover exists,
and where fL/ρ1 < 50 Hz/ohm-m when a conductive
basement underlies resistive cover. In spite of these
limitations, quad–quad resistivity is often preferable to
in-phase–quad resistivity in highly magnetic areas.

INTRODUCTION

Huang and Fraser (2000) discuss the use of the quadrature
responses from two adjacent frequencies of a helicopter-borne
electromagnetic (EM) system to compute the apparent
resistivity of the earth. This contrasts with the usual method
of computing the apparent resistivity from the in-phase and
quadrature response from a single frequency using techniques
developed by Fraser (1978). We refer to the apparent resistivity
obtained from two quadrature responses as quad–quad resis-
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tivity, in contrast to the in-phase–quad resistivity computed
from a single frequency. In this paper, we assume the reader is
familiar with the contents of Huang and Fraser (2000), where
the quad-quad technique is introduced. We now investigate
further the behavior of dual-frequency quad–quad resistivity,
comparing it to single-frequency in-phase–quad resistivity.

The apparent resistivity for a given EM sensor array can be
defined in a number of ways (Spies and Eggers, 1986). In partic-
ular, there are at least 14 definitions of apparent resistivity for
frequency-domain helicopter EM systems (Figure 1, Table 1).
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460 Huang and Fraser

It may be helpful to place our study in the context of these
definitions.

Fraser (1990) provides five different definitions or trans-
forms (Table 1, 1–5) for the apparent resistivity from half-space
models based on helicopter EM input parameters from a single
frequency. Of these five half-space transforms, the pseudolayer
half-space transform 1 of Figure 1b is preferred for displaying
the apparent resistivity in both plan (e.g., Fraser, 1978) and

Table 1. Fourteen half-space resistivity transforms characterized by their input parameters. The parameters I, Q, A, and φ refer,
respectively, to the input in-phase, quadrature, EM amplitude (I2 + Q2)1/2, and phase ratio Q/I for a given frequency; QL and QH
refer to the quadrature response for a lower and a higher frequency, respectively. For magnetic conductive half-space transforms
(6, 7, 14), the magnetic permeability µ is first determined from the lowest frequency and then applied as input for each of the
higher frequencies. For dielectric conductive half-space transforms (8–11), with or without magnetic permeability, the dielectric
permittivity ε is first determined from the highest frequency and then applied as input for the lower frequencies if necessary. The
output resistivity and sensor–source distance are respectively indicated by ρ and h (Figure 1).

Transform Input Output No. of freqs Half-space model Use in practice

Applicable for nonpermeable, nondielectric half-spaces
1 I , Q (or A, φ) ρ, h 1 Pseudolayer Most common use
2 A, a ρ 1 Homogeneous Use has diminished
3 φ, a ρ 1 Homogeneous Not used
4 I , a ρ 1 Homogeneous Not used
5 Q, a ρ 1 Homogeneous Not used

Applicable for permeable half-spaces
6 I , Q, µ ρ, h 1 Pseudolayer Limited use
7 A, a, µ ρ 1 Homogeneous Not used

Applicable for dielectric half-spaces
8 I , Q, ε ρ, h 1 Pseudolayer Limited use
9 A, a, ε ρ 1 Homogeneous Not used

Applicable for permeable dielectric half-spaces
10 I , Q, µ, ε ρ, h 1 Pseudolayer Limited use
11 A, a, µ, ε ρ 1 Homogeneous Not used
Applicable for nonpermeable and permeable half-spaces
12 QL , QH ρ, h 2 Pseudolayer Subject of this paper
13 QL , QH , a ρ 2 Homogeneous Subject of this paper
14 QL , QH , µ ρ, h 2 Pseudolayer Subject of this paper

FIG. 1. (a) The homogeneous half-space model, where the top of the half-space coincides with the earth’s surface as defined by the
radar or laser altimeter. Amplitude refers to the square root of the sum of the squares of the in-phase and quadrature components.
(b) The pseudolayer half-space model, where the top of the half-space is defined numerically by the output parameter h. The
pseudolayer half-space model is equivalent to a two-layer case where the upper layer is of infinite resistivity. The thickness t of
the pseudolayer is the difference between the computed height h and the measured bird altitude a as obtained from the altimeter.
The argument list for the function f may change in accordance with the Input column of Table 1.

section (e.g., Sengpiel, 1988). It has two advantages over the
other four half-space transforms (2–5), all of which use the
homogeneous half-space model of Figure 1a. First, the pseu-
dolayer half-space model and its transform 1 do not use flight
height as an input; therefore, the apparent resistivity is immune
to sensor–source distance errors caused by the altimeter’s re-
sponse to forests and rugged topography. Second, its sensi-
tivity to resistivity variations at depth is significantly greater
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than for the homogeneous half-space model, as will be seen
below.

When the EM data are impacted by magnetic permeability
or dielectric permittivity, transforms 1–5 of Table 1 can yield
misleading apparent resistivities; for such situations, the resis-
tivity transforms 6–11 of Table 1 are applicable (Huang and
Fraser, 2000, 2001, 2002). These transforms require the correct
permeability and/or permittivity to yield the correct apparent
resistivity.

Huang and Fraser (2000) describe additional apparent re-
sistivity transforms defined by the quadrature responses from
any two, usually adjacent, frequencies. One such transform is
shown as 12 of Table 1. It is of interest because it yields an
apparent resistivity that is fairly independent of magnetic per-
meability. However, magnetic permeability can be an input
variable when computing quad–quad resistivity, as shown in
transform 14 of Table 1, although it generally has little impact
on the computed resistivity.

The quad–quad technique, while of value in magnetic terrain
for computing resistivity, has not been thoroughly presented,
and so a user could be unaware of its potential problems. Our
paper shows that quad–quad resistivity sometimes exhibits un-
desirable behavior. For example, the apparent resistivity values
may fall above (overshoot) or below (undershoot) the range
of the true resistivities of the materials present in a layered
earth. Overshoots and undershoots are artifacts of the resistiv-
ity computation and have been reported elsewhere for other
EM techniques (e.g., Morrison et al., 1969). These issues are im-
portant because the behavior of an apparent resistivity param-
eter limits the usefulness of interpretation techniques based on
apparent resistivity as input, e.g., the use of a differential resis-
tivity (Huang and Fraser, 1996; Sengpiel and Siemon, 2000).

In the synthetic examples shown below, the forward solu-
tions are obtained from equation (1) in Huang and Fraser
(2000) through Hankel transformation. The sensor–source dis-
tance (flying height) is taken as 30 m, which is common for
helicopter EM surveys. For a homogeneous earth, the appar-
ent resistivity computed from EM data using any half-space
algorithm is independent of flying height and matches the true
resistivity. However, for a layered earth, the apparent resis-
tivity is a slowly varying function of flying height. For exam-
ple, a 1000-Hz helicopter EM system flown over a two-layer
earth (10-m-thick upper layer of 10 ohm-m and a lower layer of
100 ohm-m) will yield in-phase–quad resistivities of 39.5 and
42.1 ohm-m, respectively, for flying heights of 30 and 40 m when
using transform 1. This paper does not further discuss the im-
pact of flying height variations.

APPARENT RESISTIVITY ALGORITHMS

Apparent resistivity is traditionally defined as the resistiv-
ity of a homogeneous half-space that will produce the same
response as measured over the real earth with the same geo-
physical system. All system arrays and all half-space models
and algorithms yield the true resistivity when the earth is a true
homogeneous half-space, but all tend to yield different appar-
ent resistivities when the earth is inhomogeneous, e.g., layered.

Single-frequency algorithms

The apparent resistivity ρa and apparent height ha of the
pseudolayer model of Figure 1b (transforms 1 and 6, Table 1)

can be written as functions of the in-phase I and quadrature Q
responses at a single frequency and an optional relative mag-
netic permeability µr, i.e.,

{ρa, ha} = f (I , Q, µr ). (1)

The apparent thickness of the pseudolayer at that frequency is
obtained from

ta = ha − a, (2)

where a is the EM bird altitude determined from the altimeter.
For the homogeneous half-space model of Figure 1a, the

apparent resistivity can be written for a single frequency and
an optional relative magnetic permeability µr as

ρa = f (I , Q,a, µr ), (3)

where I and Q may be taken separately (transforms 4, 5) or,
more usually, may be taken in combination to yield a single
input parameter, typically the EM amplitude A= (I 2+ Q2)1/2

(transforms 2 and 7).
Figure 2 shows the normalized apparent resistivity as a func-

tion of the normalized skin depth, obtained from the in-phase–
quad algorithms of the pseudolayer and homogeneous half-
space models, for a suite of nonmagnetic two-layer cases for
the helicopter EM system. The apparent resistivity of Figure 2a,
derived from the pseudolayer half-space model (transform 1),
is more sensitive to the lower layer (i.e., the underlying half-
space) than the apparent resistivity of Figure 2b from the ho-
mogeneous half-space model (transform 2). This is evident be-
cause the apparent resistivity from the pseudolayer model has
a greater dynamic range at medium values of the abscissa than
that from the homogeneous half-space model, especially when
the lower layer is conductive. Also, the amount of overshoot
and undershoot in the apparent resistivity (when the abscissa
is approximately 1) is larger for the homogeneous half-space
model than for the pseudolayer half-space model. For these
reasons, the pseudolayer half-space model is preferred for in-
phase–quad resistivity.

Dual-frequency algorithms

Huang and Fraser (2000) define an apparent resistivity based
on a pseudolayer half-space model similar to Figure 1b, us-
ing the quadrature responses at two frequencies. The in-phase
component is ignored. The quadrature responses QL and QH

from a lower frequency fL and an adjacent higher frequency
fH , respectively, are used to compute an apparent resistivity ρa

and an apparent height ha. The apparent resistivity and height
can be written as

{ρa, ha} = f (QL , QH , µr ), (4)

where µr is an optional input relative magnetic permeability
(cf. transforms 12 and 14). As for the single-frequency in-
phase–quad algorithm, the apparent thickness of the pseu-
dolayer of Figure 1b for the two-frequency quad–quad algo-
rithm is obtained from equation (2).

The quad–quad apparent resistivity can also be com-
puted from variants of the homogeneous half-space model of
Figure 1a, i.e.,

ρa = f (QL , QH ,a, µr ), (5)
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where a is the sensor–source distance. The low- and high-
frequency quadrature responses QL and QH are combined to
yield a single input parameter, typically the ratio QL/QH or an
amplitude function such as (QL + QH ) or (Q2

L + Q2
H )1/2. The

homogeneous half-space model yields two solutions to the ap-
parent resistivity when using either of these quadrature am-
plitude functions. However, the solution is unique when using
the quadrature ratio. Hence, we deal only with the quadrature
ratio when computing the quad–quad resistivity using the ho-
mogeneous half-space model, e.g., transform 13 in which the
magnetic permeability is ignored.

Figure 3 shows the apparent resistivity curves, obtained from
the quad–quad algorithms of the pseudolayer and homoge-
neous half-space models, for a suite of nonmagnetic two-layer

FIG. 2. A comparison of normalized in-phase–quad resistivity curves for a suite of two-layer cases for (a) the pseudolayer half-space
model using transform 1 of Table 1 and (b) the homogeneous half-space model using transform 2. The ratio of the lower-layer
resistivity ρ2 to the upper-layer resistivity ρ1 varies from 1/1000 to 1000 for these 18 cases. The abscissa represents the skin depth
δ1 of the upper layer normalized against its thickness t1. The ordinate is the computed apparent resistivity ρa normalized against
the resistivity ρ1 of the upper layer. (The curves are specific for a flying height a (Figure 1) of 30 m and for the ratio f/ρ1=
90 Hz/ohm-m, where f is the frequency, equating to a skin depth in the upper layer of 53 m.)

FIG. 3. A comparison of the quad–quad resistivity curves for a suite of two-layer cases for (a) the pseudolayer half-space model
using transform 12 and (b) the homogeneous half-space model using transform 13. See Figure 2 for the abscissa and ordinate.
(The curves are specific for the ratio fL/ρ1= 90 Hz/ohm-m, where fL is the low frequency of the pair, equating to a skin depth in
the upper layer of 53 m for this frequency.)

cases for the helicopter EM system. The apparent resistivi-
ties of Figure 3a, obtained from the pseudolayer half-space
model [equation (4)], and Figure 3b, from the homogeneous
half-space model [equation (5)], have roughly equal sensitivity
to the resistivity of the lower layer. However, the resistivity
from the homogeneous half-space model exhibits large over-
shoot for the conductive upper-layer case at high values of the
abscissa of Figure 3b. For example, note the upper curve of
this figure. The ordinate ratio saturates at the correct value of
1000 for high values of the abscissa, but prior to saturation the
ordinate ratio overshoots to 10 000. This means the apparent
resistivity exceeds the true resistivity of the most resistive layer
by a factor of 10. Thus, as for the in-phase–quad algorithms,
the pseudolayer half-space model yields superior results to the
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homogeneous half-space model for the quad–quad resistivity.
Consequently, the homogeneous half-space model will not be
considered further.

We now compare the apparent resistivity curves obtained
from quad–quad transform 12 of Figure 3a with those from in-
phase–quad transform 1 of Figure 2a. Both sets of curves are
from the pseudolayer model for the same suite of two-layer
cases. The quad–quad algorithm (Figure 3a) has less sensitiv-
ity to the resistivity of the lower layer (at midabscissa value)
than the in-phase–quad algorithm (Figure 2a), and it exhibits a
more serious overshoot (at low abscissa value), although it has
little undershoot. With these deficiencies, there needs to be a
good reason to use the quad–quad algorithm in preference to
the in-phase–quad algorithm for computing the resistivity. This
reason lies with reducing the effect of magnetic permeability
on the response of the input EM parameters.

QUAD–QUAD APPARENT RESISTIVITY

The following examples deal only with the pseudolayer re-
sistivity model, using both the in-phase–quad and quad–quad
algorithms. The quad–quad resistivity technique was origi-
nally proposed for use in magnetic areas that are also re-
sistive (Huang and Fraser, 1998). In such areas, conduction
currents are minimal and magnetic polarization currents may
dominate. Magnetic permeability has a much lesser impact
on the quadrature component than on the in-phase compo-
nent. Thus, the quad–quad resistivity of transform 12 is less
affected by magnetic permeability than the in-phase–quad re-
sistivity of transform 1. Also, the quad–quad resistivity may be
less affected by errors in the calculated magnetic permeability
than the in-phase–quad resistivity of transform 6. We use syn-
thetic two-layer data to test the quad–quad method and com-
pare it to the in-phase–quad method. A number of layered
earths with various combinations of resistivities, thicknesses,
and permeabilities have been studied. Representative cases
are presented below using frequencies and frequency ratios
characteristic of most Dighem helicopter-borne EM systems.

FIG. 4. (a) The 900/7200 Hz quad–quad resistivity of transform 12 and (b) the in-phase–quad resistivity of transform 1 for a suite of
two-layer cases where the resistivities of the upper layer vary from 1 to 500 ohm-m and ρ2/ρ1= 1/50. See Figure 2 for the abscissa
and ordinate.

Nonmagnetic two-layer cases

Since the quad–quad method is a new analytic technique,
for simplicity we focus first on the behavior of quad–quad re-
sistivity for nonmagnetic cases. Then we discuss the effect of
magnetization on quad–quad resistivity and compare it to in-
phase–quad resistivity.

The behavior of quad–quad resistivity can be undesirable
under certain circumstances. For example, when resistivity
is low or frequencies are high, significant overshoot and
undershoot in the computed resistivity may occur. Figure 4a
shows the 900/7200 Hz quad–quad resistivity for two-layer
cases where the resistivities of the upper layer vary from 1 to
500 ohm-m and ρ2/ρ1 is fixed at 1/50. The amount of the re-
sistivity overshoot of the ordinate ρa/ρ1 of Figure 4a for these
conductive basement cases increases with decreasing values of
the upper-layer resistivity ρ1. The maximum resistivity over-
shoot occurs at values of the abscissa δ1/t1 in the range of 1.5
to 3, depending on the upper-layer resistivity. The quad–quad
resistivity overshoot can yield apparent resistivities that are
10 times higher than the upper-layer resistivity, which itself
is higher than the resistivity of the lower conductive layer or
half-space. This means the overshoot can yield apparent resis-
tivities that lie outside the range of the true resistivities of the
two-layer model by as much as a factor of 10 for this particular
series of two-layer cases. In contrast to these quad–quad resis-
tivity results, the in-phase–quad resistivity curves of Figure 4b
exhibit only negligible overshoot for these two-layer cases.

The amount of apparent resistivity overshoot and under-
shoot increases with the frequencies used to compute the quad–
quad resistivity. Figure 5a presents 7200/56 000 Hz quad–quad
resistivity for two two-layer cases. The upper-layer resistivity
is 10 ohm-m, and the resistivity contrasts ρ2/ρ1 are 1/50 and
50. The apparent resistivity overshoots by a factor of 10 for the
conductive lower-layer case. In Figure 4a, where the ratio of
high to low frequency is also about 8 but the frequencies are
lower (i.e., 900/7200 Hz), the apparent resistivity overshoots
by a factor of only 2.2 for the same case of ρ1= 10 ohm-m.
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As with the other examples, the overshoot in Figure 5a (for
a conductive lower layer) is larger than the undershoot (for a
conductive upper layer) for equal resistivity contrast.

The frequency ratios fH/ fL in the above examples are about
8. The influence of different frequency ratios for a fixed lower
frequency is shown in Figure 5b. The amplitudes of the over-
shoot and undershoot of this quad–quad resistivity are fairly
independent of the frequency ratio, although the response is
shifted and spread along the abscissa, depending on this ratio.

Our modeling shows that the amount of overshoot and un-
dershoot of the quad–quad resistivity for nonmagnetic two-
layer cases depends mainly upon both the ratio of the lower
frequency to the resistivity of the upper layer and the resistivity
contrast, and slightly upon the frequency ratio.

The amount of overshoot or undershoot is also related to the
skin depth of the lower frequency. This is to be expected since
the skin depth in the upper layer is proportional to

√
(ρ1/ fL).

For a two-layer case, a resistivity overshoot or undershoot tends
to occur when the skin depth is about 1.5 to 2.5 times deeper
than the two-layer interface for the upper-layer resistivity ρ1

FIG. 5. (a) The 7200/56 000 Hz quad–quad resistivity of transform 12 for a suite of two-layer cases with an upper-layer resistivity of
10 ohm-m and with ρ2/ρ1= 50 and 1/50. (b) The quad–quad resistivity curves for several ratios fH/ fL of the high to low frequencies.

FIG.6. The apparent resistivity curves for several relative magnetic permeabilitiesµr are obtained using (a) the quad–quad transform
14 for 900/7200 Hz and (b) the in-phase–quad transform 6 for 900 Hz. There is no permeability contrast between the magnetic
layers.

at the lower frequency fL . For single-frequency analysis us-
ing the in-phase–quad algorithm, apparent resistivity may also
overshoot or undershoot for an interface at this same depth.
However, in-phase–quad resistivities only overshoot or under-
shoot the upper-layer resistivity by a few percent of the true
resistivity. Therefore, this phenomenon is unimportant in prac-
tice when using the in-phase–quad algorithm.

Magnetic two-layer cases

We now show how quad–quad resistivity behaves for mag-
netic two-layer cases. Figure 6 presents the apparent resistiv-
ities for a suite of two-layer cases where the permeability is
uniform for the two layers. Such a case simulates conductive
or resistive cover over bedrock where the cover was produced
by weathering or erosion that did not alter, attenuate, or con-
centrate the magnetite.

In generating the two panels of Figure 6, the forward so-
lutions yield the in-phase and quadrature responses for the
various frequencies. The permeability is computed from the
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900-Hz EM data (Huang and Fraser, 2000), and it is then used
along with the in-phase and/or quadrature responses to obtain
the apparent resistivity using the quad–quad (Figure 6a) and
in-phase–quad (Figure 6b) algorithms. This approach yields
virtually the correct input permeability as shown by Huang and
Fraser (2000) when there is no permeability contrast between
the layers.

The resistivity curves of Figure 6 illustrate that the apparent
resistivities are impacted by the relative magnetic permeabil-
ity µr . The in-phase–quad resistivity curves for the conductive
upper-layer case of Figure 6b may seem strange, with the curve
forµr = 5 lying between those forµr = 1 andµr = 1.5. We have
added the curve for µr = 1.00001 to illustrate that even a van-
ishingly small permeability can have some impact on the re-
sponse when the upper layer is conductive.

Figure 6 shows that the magnetic conductive half-space
transforms yield permeability-dependent values for the appar-
ent resistivities even when the correct permeability is used in
the transformation to the half-space model. We use the expres-
sion nonpermeable apparent resistivity to refer to the apparent
resistivity that is obtained for the nonmagnetic case of µr = 1.
When µr > 1, an apparent resistivity that is identical to the
nonpermeable apparent resistivity cannot be obtained through
the transformation process when using half-space models, al-
though it can be close to it under certain circumstances.

The deviation of the apparent resistivity curves for µr > 1
from the nonpermeable apparent resistivity curves (µr = 1) is
more acute for the in-phase–quad algorithm (Figure 6b) than
for the quad–quad algorithm (Figure 6a). The deviation of the
quad–quad resistivity is generally not serious when the relative
magnetic permeability is less than 2, i.e., when the amount of
magnetite is less than about 20% by volume. Magnetic rocks
seldom contain this much magnetite, apart from the iron for-
mations. Thus, there is a strong reason for using the quad–quad
algorithm in magnetic terrain notwithstanding the danger of re-
sistivity overshoot and undershoot that can occur, e.g., at about
δ1/t1= 2 in Figure 6a. In this figure, the amount of overshoot
or undershoot in the apparent resistivity increases only slightly
with magnetic permeability.

In our testing of magnetic-resistivity half-space transforma-
tion methods, we also varied the permeability between the lay-
ers, which of course led to many more combinations of param-
eters. The testing of such cases yielded results similar to those
of Figure 6.

Deviation of apparent resistivities from nonpermeable
apparent resistivity

The expression nonpermeable apparent resistivity was used
above to refer to the apparent resistivity obtained from half-
space models having a relative magnetic permeability µr of 1.
We showed that the effect of a permeability µr > 1 tends to
yield an apparent resistivity for a layered earth which differs
from the nonpermeable apparent resistivity obtained from the
same resistivity layering but with µr = 1.

A means of quickly observing the effect of permeability
on the half-space transformation of layered-earth data is to
perform two operation. First, compute the apparent resistivity
curves for various values of relative magnetic permeability as
shown, for example, in Figure 6. Second, divide the apparent
resistivity values for µr > 1 by the apparent resistivity values

forµr = 1 for that layered-earth case. If the apparent resistivity
ratio for µr > 1 is unity, then the apparent resistivity for µr > 1
is equal to that for µr = 1 and so the permeability does not af-
fect the apparent resistivity. If not equal to unity, the apparent
resistivity differs from the nonpermeable apparent resistivity.

Figure 7 presents a plot of the apparent resistivity ratio for
magnetic two-layer cases with resistivity contrasts of 50 and
1/50. Both layers have the same permeability. The deviations
of the apparent resistivity ratios from unity are immediately
seen and quantified. Figures 7a and 7b show the resistivity de-
viations for the quad–quad algorithm for 900/7200 Hz, and
Figures 7c and 7d show the deviations for the in-phase–quad
algorithm for 900 Hz. The deviations of the apparent resistivity
from the nonpermeable apparent resistivity are greater for the
in-phase–quad algorithm. The deviations are much less severe
for the quad–quad algorithm—particularly for those perme-
abilities likely to be encountered in nature, i.e., when µr < 2.
The type of plot shown in Figure 7 is helpful in quickly assessing
whether the in-phase–quad algorithm or the quad–quad algo-
rithm would be more useful for resistivity mapping in a given
survey area.

When to use and when to avoid the quad–quad algorithm

We have shown that apparent resistivity computed from the
quad–quad algorithm is much less sensitive to magnetic po-
larization currents than is the in-phase–quad algorithm. This
bodes well for using the quad–quad algorithm for resistivity
mapping in magnetic terrains. However, we have also shown
that the quad–quad algorithm can give a misleading picture
with severe undershoots or overshoots. For multifrequency
electrical sounding, the quad–quad algorithm has the disad-
vantage of yielding one less apparent resistivity value since
it requires data from two frequencies compared to the single
frequency of the in-phase–quad algorithm. A further disad-
vantage is that the sensitivity of the apparent resistivities to
buried conductors is less for the quad–quad algorithm when
the terrain is nonmagnetic.

The in-phase–quad algorithm should always be preferred in
the absence of significant magnetic permeability. In magnetic
terrain, the quad–quad algorithm is preferable but should be
used with care to avoid misinterpretation caused by a mislead-
ing apparent resistivity presentation arising from high induc-
tion numbers. Generally speaking, the quad–quad algorithm
should not be used if fL/ρ1 > 500 Hz/ohm-m in areas where
conductive overburden exists and if fL/ρ1 > 50 Hz/ohm-m in
areas where a conductive basement underlies resistive cover.

A FIELD EXAMPLE

A field example using Dighem survey data is presented
in Huang and Fraser (2000). The survey is from an area in
southern Africa where the strata are gently dipping and highly
magnetized in places and where the overburden is conductive
with a variable thickness. Figures 9 and 10 in Huang and Fraser
(2000) compare the quad–quad resistivity with the in-phase–
quad resistivity for several frequencies and also compares the
EM-derived magnetic susceptibility with the total field mag-
netic data.

We show one example from this field data to illustrate
that the quad–quad resistivity is fairly independent of the in-
put permeability. Figures 8a and 8b, respectively, present the
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quad–quad resistivity where (a) the input permeability is free
space and (b) the input permeability was first computed from
the EM data, where the magnetic susceptibilities ranged from
0 to 170× 10−3 SI units (up to 5% magnetite). The two fig-
ures visually are almost identical, illustrating that the output
quad–quad resistivity is quite forgiving of errors in the input
magnetic permeability. This is to be expected from our testing
of the quad–quad algorithm. On the other hand, the output
in-phase–quad resistivity is not forgiving of errors in the input
permeability, as shown in Huang and Fraser (2000). Therefore,
if the magnetic permeability has not been obtained from the
EM data or is suspect, the quad–quad algorithm should be used
to compute the apparent resistivity.

CONCLUSIONS

The behavior of the quad–quad (apparent) resistivity in com-
parison to the in-phase–quad resistivity has been studied to de-
termine the conditions under which quad–quad resistivity can
be useful. If the ratio of the lower frequency fL to the upper-
layer resistivity ρ1 is low (see below), the quad–quad resistivity
will behave well. In areas yielding a high value of fL/ρ1, the
quad–quad resistivity may lie outside of the range of the true re-
sistivities and therefore provide misleading information. These
problems are exacerbated when large resistivity contrasts exist
(e.g., ρ2/ρ1 for a two-layer earth). This indicates the quad–

FIG. 7. The deviations of the quad–quad resistivity of transform 14 for 900/7200 Hz from the nonpermeable apparent resistivity
are shown for four different relative magnetic permeabilities µr for two-layer cases with resistivity contrasts of (a) 50 and (b) 1/50.
The deviations for the in-phase–quad resistivity of transform 6 are shown for the same two-layer cases with resistivity contrasts of
(c) 50 and (d) 1/50. There is no permeability contrast between the magnetic layers. Note the differences in the ordinate scales.

quad resistivity algorithm should be avoided when using high
frequencies in conductive areas. This often is not a serious lim-
itation, bearing in mind that the primary use of the quad–quad
resistivity algorithm is in highly magnetized areas. Such ter-
rains often appear to be fairly resistive; otherwise, magnetic
polarization currents are usually not sensed by the EM system.

FIG. 8. Quad–quad resistivity maps for 400/7200 Hz are shown
(a) using transform 12 with an input magnetic permeability of
free space and (b) using transform 14 with the input (precom-
puted) apparent permeability being taken from Figure 9b of
Huang and Fraser (2000).
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Where thick conductive cover exists over highly magnetic
rocks, there will be little evidence of magnetic polarization cur-
rents because the conduction currents in the cover will domi-
nate. In such a case, there is no incentive to use the quad–quad
resistivity algorithm. Quad–quad resistivity is recommended
only when fL/ρ1 < 500 Hz/ohm-m in magnetic areas where
conductive overburden exists and when fL/ρ1 < 50 Hz/ohm-m
in magnetic areas where a conductive basement underlies a re-
sistive cover. In very conductive areas or in the absence of sig-
nificant magnetic permeability, the in-phase–quad algorithm is
always preferable. Apart from these situations, the quad–quad
resistivity algorithm often yields superior results in magnetic
areas.
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